生成式AI推動(dòng)大數(shù)據(jù)時(shí)代向大智能時(shí)代躍遷
產(chǎn)業(yè)觀察家們注意到生成式AI的革命性意義,并作出豐富解讀。英偉達(dá)創(chuàng)始人兼首席執(zhí)行官黃仁勛稱生成式AI的推出為“AI產(chǎn)業(yè)的iPhone時(shí)刻”,意指其顛覆性的技術(shù)突破和產(chǎn)品形態(tài)或?qū)⒁l(fā)Al產(chǎn)業(yè)的全面變革。投資公司a16z的合伙人馬丁·卡薩多(Martin Casado)則稱其為“第三個(gè)計(jì)算時(shí)代”,意指繼微芯片將計(jì)算的邊際成本降到零、互聯(lián)網(wǎng)將分發(fā)的邊際成本降到零之后,大模型將創(chuàng)作內(nèi)容的邊際成本降到零的第三次飛躍。麥肯錫技術(shù)合伙人萊瑞拉·余(Lareina Yee)則將其類比為計(jì)算產(chǎn)業(yè)經(jīng)歷過(guò)的大型機(jī)到PC的劇變,意指生成式AI將技術(shù)使用權(quán)從精英轉(zhuǎn)向大眾,實(shí)現(xiàn)了AI技術(shù)的民主化。然而,以上解讀局限于AI產(chǎn)業(yè)自身,沒(méi)有考慮生成式AI如何重塑更廣泛的經(jīng)濟(jì)。筆者認(rèn)為,生成式AI和大模型有潛力成為整個(gè)國(guó)民經(jīng)濟(jì)智能基礎(chǔ)設(shè)施,進(jìn)而奠定所謂的大智能時(shí)代。
生成式AI,有何不同
不同于專注解釋現(xiàn)有數(shù)據(jù)的分析式AI或根據(jù)給定輸入推斷輸出的預(yù)測(cè)式AI,生成式AI專注于生成新內(nèi)容,或稱合成數(shù)據(jù)(synthetic data)。ChatGPT僅是大模型的一種,準(zhǔn)確地說(shuō),它僅是文本大模型的一種。文本大模型之外,還有音頻大模型和視覺(jué)大模型。最近,大模型已發(fā)展至具備多模態(tài)對(duì)話能力。
不同于預(yù)設(shè)規(guī)則或者試圖尋找結(jié)構(gòu)化規(guī)則的傳統(tǒng)AI,生成式AI直接從海量未經(jīng)標(biāo)簽化的非結(jié)構(gòu)化數(shù)據(jù)中提取基礎(chǔ)模型(foundation model)。由于基礎(chǔ)模型的參數(shù)巨大,常被稱為大模型。大模型的訓(xùn)練極端昂貴,但具備一系列傳統(tǒng)AI模型不具備的優(yōu)勢(shì):一是其采取的非監(jiān)督訓(xùn)練的方式極大地降低了人工標(biāo)注的需要;二是模型具有更好的通用性,可靈活應(yīng)對(duì)多種任務(wù);三是大模型可以理解并使用人類語(yǔ)言,交互體驗(yàn)非常自然。
歸根到底,大模型是人類全量知識(shí)的壓縮。傳統(tǒng)AI利用有限的知識(shí)(預(yù)設(shè)的算法)從豐富的場(chǎng)景數(shù)據(jù)中提取結(jié)果,而大模型利用近乎完備的知識(shí)去解讀場(chǎng)景數(shù)據(jù)(盡管它不一定豐富)。
大模型作為智能基礎(chǔ)設(shè)施
生產(chǎn)力的進(jìn)步通常體現(xiàn)為某種新型基礎(chǔ)設(shè)施的建立。工業(yè)時(shí)代出現(xiàn)電力基礎(chǔ)設(shè)施,網(wǎng)絡(luò)化時(shí)代出現(xiàn)網(wǎng)絡(luò)基礎(chǔ)設(shè)施,而智能時(shí)代將出現(xiàn)何種基礎(chǔ)設(shè)施?筆者斷言大模型具備成為智能基礎(chǔ)設(shè)施的潛力,因其具備基礎(chǔ)設(shè)施的三個(gè)基本特征。
一是通用性。傳統(tǒng)AI需要針對(duì)特定任務(wù)設(shè)計(jì),表現(xiàn)出更多的專用性與垂直性。相比之下,經(jīng)過(guò)高強(qiáng)度預(yù)訓(xùn)練的大模型具備靈活應(yīng)對(duì)多種非預(yù)設(shè)任務(wù)的能力,可通過(guò)微調(diào)及提示詞工程實(shí)現(xiàn)應(yīng)用情景的高擴(kuò)展,進(jìn)而在通用性上大大提升。
二是規(guī)模經(jīng)濟(jì)。大模型的規(guī)模經(jīng)濟(jì)與兩個(gè)概念有關(guān)。一是智能涌現(xiàn)。只有模型參數(shù)規(guī)模超越臨界點(diǎn)之后,智能才開(kāi)始涌現(xiàn)。工業(yè)經(jīng)濟(jì)情景下,低于最小有效生產(chǎn)規(guī)模的廠商無(wú)法有效參與市場(chǎng)競(jìng)爭(zhēng)。類似地,廠商必須投入高昂的前期訓(xùn)練成本,才能參與大模型市場(chǎng)競(jìng)爭(zhēng)。二是智能摩爾定律。傳統(tǒng)摩爾定律預(yù)測(cè)硅片上的晶體管密度隨時(shí)間推移指數(shù)級(jí)增長(zhǎng),而成本保持不變。智能摩爾定律則預(yù)測(cè)大模型智能所能覆蓋的場(chǎng)景數(shù)(智能密度)具有類似的規(guī)律。這意味著,隨著大模型參數(shù)的增長(zhǎng),其覆蓋智能場(chǎng)景的單位成本呈指數(shù)級(jí)降低。
三是外部性。修好的路上不跑車(chē),價(jià)值等于零。盡管大模型語(yǔ)境下的“車(chē)”是什么尚未完全確定,但確定的是大模型的出現(xiàn)將促進(jìn)各類“車(chē)型”的創(chuàng)新。因此,大模型對(duì)經(jīng)濟(jì)的推動(dòng)作用要遠(yuǎn)遠(yuǎn)大于生成式AI產(chǎn)業(yè)產(chǎn)值本身。聊天類應(yīng)用僅僅是大模型應(yīng)用的初級(jí)形態(tài),創(chuàng)意和想象力與未知場(chǎng)景結(jié)合迸發(fā)出的產(chǎn)業(yè)能量,才是大模型作為基礎(chǔ)設(shè)施最具想象空間之處。
通用性、規(guī)模經(jīng)濟(jì)和外部性是基礎(chǔ)設(shè)施的一般性特征。那么,大模型作為智能基礎(chǔ)設(shè)施的特殊性何在?筆者認(rèn)為,這是人類歷史上第一次實(shí)現(xiàn)智能的大規(guī)模集中供給,故而稱其為智能基礎(chǔ)設(shè)施。難道數(shù)字化時(shí)代不是已見(jiàn)證林林總總的智能化基礎(chǔ)設(shè)施嗎(如智能手機(jī)、智能電網(wǎng)、智能交通等)?此處需澄清,智能的基礎(chǔ)設(shè)施化不同于基礎(chǔ)設(shè)施的智能化。智能手機(jī)的核心是手機(jī),智能電網(wǎng)的核心是電網(wǎng),智能交通的核心是交通,賦予其各種智能內(nèi)涵的過(guò)程是基礎(chǔ)設(shè)施的智能化。智能基礎(chǔ)設(shè)施的核心則是相對(duì)通用的智能本身,能對(duì)接千行百業(yè)。過(guò)去幾十年,數(shù)字化基礎(chǔ)設(shè)施圍繞信息的采集、處理、傳輸、存儲(chǔ)、計(jì)算等環(huán)節(jié)得到充分發(fā)展,而智能基礎(chǔ)設(shè)施的發(fā)展才剛剛開(kāi)始。
從大數(shù)據(jù)時(shí)代到大智能時(shí)代
每輪基礎(chǔ)設(shè)施躍遷都會(huì)引發(fā)一輪新商業(yè)機(jī)遇。這是因?yàn)椋A(chǔ)設(shè)施將此前需要分散承擔(dān)的可變成本轉(zhuǎn)化為集中承擔(dān)的固定成本,推動(dòng)新要素普及、降低創(chuàng)新門(mén)檻。智能基礎(chǔ)設(shè)施帶來(lái)的新要素就是智能:大模型壓縮了人類所有知識(shí),將場(chǎng)景數(shù)據(jù)輸入大模型,大模型就能根據(jù)其知識(shí)反饋相應(yīng)結(jié)果。當(dāng)這種智能產(chǎn)生模式廣泛應(yīng)用,我們或?qū)⒁?jiàn)證前所未有的大智能時(shí)代。
筆者認(rèn)為,大智能時(shí)代區(qū)別于大數(shù)據(jù)時(shí)代的核心特征是數(shù)據(jù)與智能的解耦。谷歌常因所謂數(shù)據(jù)網(wǎng)絡(luò)效應(yīng)被反壟斷機(jī)構(gòu)約談:搜索引擎的市場(chǎng)份額越大,用戶數(shù)據(jù)就越多,數(shù)據(jù)訓(xùn)練出來(lái)的機(jī)器算法也就越智能,用戶體驗(yàn)進(jìn)一步提升,進(jìn)而獲取更大的市場(chǎng)份額。曾鳴教授更是基于阿里巴巴的類似經(jīng)驗(yàn),提煉出以“數(shù)據(jù)智能”為基石的“智能商業(yè)”方法論。這種思維強(qiáng)調(diào)企業(yè)構(gòu)建的數(shù)據(jù)飛輪是智能商業(yè)的前提:無(wú)數(shù)據(jù),不智能。
在大智能時(shí)代,這一圭臬在產(chǎn)業(yè)層面仍然成立,但在企業(yè)層面的應(yīng)用卻值得推敲:智能不再完全來(lái)自于企業(yè)自身構(gòu)建的數(shù)據(jù)飛輪。數(shù)據(jù)作為智能原料的地位無(wú)可撼動(dòng),然而,大模型使用這種原料的效率遠(yuǎn)超過(guò)此前分散部署的“小模型”,以至于有志于“智能商業(yè)”的企業(yè)構(gòu)建自身數(shù)據(jù)飛輪喪失經(jīng)濟(jì)性。國(guó)家電網(wǎng)能穩(wěn)定輸出電力時(shí),為何要在工廠旁邊自建小發(fā)電廠呢?
智能基礎(chǔ)設(shè)施化的后果之一是數(shù)據(jù)與智能的解耦(見(jiàn)圖1)。數(shù)據(jù)與智能的解耦并不意味著數(shù)據(jù)不重要,而意味著小數(shù)據(jù)也可以撬動(dòng)大智能。當(dāng)前,大模型的進(jìn)一步發(fā)展面臨高質(zhì)量數(shù)據(jù)源不足的障礙,可見(jiàn)數(shù)據(jù)的重要性。但這不意味著任何企業(yè)都需要花心思囤積數(shù)據(jù)。過(guò)去,企業(yè)要精心構(gòu)建并維護(hù)一個(gè)數(shù)據(jù)供應(yīng)鏈,才有可能實(shí)現(xiàn)所謂的數(shù)據(jù)智能。而今,大模型使得智能不需要在低水平重復(fù)開(kāi)發(fā)。企業(yè)只需要用小數(shù)據(jù)去微調(diào)這個(gè)模型,便有可能開(kāi)展“智能商業(yè)”。由此,企業(yè)可節(jié)省精力聚焦業(yè)務(wù)創(chuàng)新,釋放出所謂——智能紅利。
生成式AI產(chǎn)業(yè)生態(tài)的三大維度
立足當(dāng)下,本部分嘗試從三個(gè)視角來(lái)把握高度動(dòng)態(tài)復(fù)雜的生成式AI產(chǎn)業(yè)生態(tài)。一是供給側(cè)視角的技術(shù)生態(tài),有助于理解生成式AI技術(shù)實(shí)現(xiàn)所需的生產(chǎn)要素;二是需求側(cè)視角的應(yīng)用生態(tài),有助于了解生成式AI的應(yīng)用方向;三是中美競(jìng)爭(zhēng)背景下的區(qū)域生態(tài),有助于理解需求側(cè)和供給側(cè)在不同條件下的互動(dòng)模式。
生成式AI技術(shù)生態(tài)
大模型技術(shù)生態(tài)符合典型的IT垂直分工架構(gòu)。最底層是基礎(chǔ)設(shè)施,負(fù)責(zé)提供大模型訓(xùn)練以及推理所需的算力。產(chǎn)業(yè)初期,算力主要用于模型預(yù)訓(xùn)練。隨著各大模型紛紛商用,用于響應(yīng)用戶請(qǐng)求所需的推理算力占比快速增加。眾所周知,大模型的算力需求主要由GPU(圖像處理單元)來(lái)滿足,NPU(神經(jīng)網(wǎng)絡(luò)處理器)和TPU(張量處理器)等專為大模型推理運(yùn)算設(shè)計(jì)的芯片也逐步成熟。NPU主要用于手機(jī)、無(wú)人機(jī)等終端產(chǎn)品的計(jì)算單元,TPU是谷歌設(shè)計(jì)的云計(jì)算芯片。值得注意的是,硬件集群只是基礎(chǔ)設(shè)施的一部分,負(fù)責(zé)硬件資源調(diào)度的云平臺(tái)也非常重要。
基礎(chǔ)設(shè)施之上是大模型。大模型有開(kāi)源和閉源之分。Open AI的GPT是一個(gè)閉源模型,而2023年7月,Meta的Llama II宣布支持開(kāi)源和商用,引爆了大模型領(lǐng)域的開(kāi)源運(yùn)動(dòng)。選擇開(kāi)源模型還是閉源模型,似乎和應(yīng)用有關(guān)。chatGPT、Midjourney等廣受歡迎的面向消費(fèi)(2C)領(lǐng)域的應(yīng)用都構(gòu)建在私有大模型之上。但面向企業(yè)(2B)領(lǐng)域的應(yīng)用通常構(gòu)建在開(kāi)源大模型之上,因?yàn)殚_(kāi)源大模型支持私有化部署,并在微調(diào)方面提供了更大的靈活度。
值得指出的是,大模型層與應(yīng)用層之間存在一個(gè)中間層,旨在幫助應(yīng)用開(kāi)發(fā)者解決兩方面問(wèn)題。一方面,基于大模型做二次開(kāi)發(fā) (微調(diào)、提示詞工程或基于人工反饋的增強(qiáng)學(xué)習(xí))需要一系列工具或模板;另一方面,由于市面上存在多種大模型,應(yīng)用開(kāi)發(fā)者可能希望一站式接入和管理。所謂MaaS(模型即服務(wù))集成了這些工具和功能。
大模型應(yīng)用生態(tài)
技術(shù)生態(tài)主要是巨頭和工程師的場(chǎng)域,應(yīng)用生態(tài)則是創(chuàng)業(yè)者和產(chǎn)品經(jīng)理的沃土。在技術(shù)生態(tài)部分,應(yīng)用層在技術(shù)堆棧中的位置得到了強(qiáng)調(diào)。本部分談及的應(yīng)用生態(tài)從需求側(cè)視角展開(kāi),根本上是要回答大模型如何對(duì)接應(yīng)用場(chǎng)景、創(chuàng)造用戶價(jià)值。這個(gè)問(wèn)題可以沿著兩個(gè)維度思考:客戶屬性和產(chǎn)品策略。
一方面,2C領(lǐng)域和2B領(lǐng)域的大模型應(yīng)用在價(jià)值創(chuàng)造方面具有顯著差異。首先,消費(fèi)類應(yīng)用的價(jià)值創(chuàng)造幾乎都在應(yīng)用內(nèi)完成,而企業(yè)級(jí)應(yīng)用需要與企業(yè)內(nèi)部?jī)r(jià)值鏈和IT系統(tǒng)整合。其次,消費(fèi)類應(yīng)用幾乎都基于公有云,而企業(yè)客戶因隱私顧慮偏好私有云或混合云部署。最后,消費(fèi)類應(yīng)用通常以一對(duì)多的方式提供服務(wù)進(jìn)而迅速規(guī)模化,而企業(yè)級(jí)應(yīng)用服務(wù)通常需要一對(duì)一定制。以上2C和2B客戶市場(chǎng)的一般性差異,并不因大模型技術(shù)的開(kāi)創(chuàng)性而改變。可見(jiàn),2C應(yīng)用的價(jià)值創(chuàng)造具備獨(dú)立性,而2B應(yīng)用的價(jià)值創(chuàng)造高度依賴其他互補(bǔ)性資源。進(jìn)而,2C應(yīng)用有望構(gòu)建出一個(gè)以自身為中心的生態(tài),而2B應(yīng)用通常嵌入在位玩家(包括客戶)的生態(tài)中。
另一方面,無(wú)論是2B還是2C,大模型應(yīng)用可考慮增強(qiáng)、替代或整合三種策略。增強(qiáng)策略為現(xiàn)有產(chǎn)品或服務(wù)加入大模型性能,進(jìn)一步提升產(chǎn)品體驗(yàn)。比如,Office產(chǎn)品中嵌入了基于大模型輔助工具(Copilot)或者視頻游戲中引入大模型生成個(gè)性化劇情。替代策略則把大模型應(yīng)用作為生產(chǎn)力工具替代原有的低效流程。比如,在客服行業(yè),替代正在大規(guī)模發(fā)生,一部分營(yíng)銷(xiāo)設(shè)計(jì)工作也有望在大模型的支撐下實(shí)現(xiàn)自動(dòng)化。相較于增強(qiáng)現(xiàn)有產(chǎn)品和替代低效流程,整合策略跳出了現(xiàn)有產(chǎn)品或流程,重新定義客戶體驗(yàn)。筆者避免使用顛覆一詞,因?yàn)檫@種重新定義很大程度上是基于重組現(xiàn)有要素發(fā)生的。大模型并不創(chuàng)造要素,但提供了高超的整合能力(如通過(guò)智能體即Agent進(jìn)行整合)。
上述兩個(gè)相對(duì)獨(dú)立的維度可以構(gòu)建出一個(gè)2X3的矩陣。這個(gè)矩陣中的一些格子看起來(lái)比另外一些格子更令人興奮。但一個(gè)機(jī)會(huì)令人興奮的程度,通常與其進(jìn)入門(mén)檻成正比,與最終勝出的概率成反比。最終,這個(gè)矩陣會(huì)被具有不同資源稟賦和風(fēng)險(xiǎn)偏好的創(chuàng)新者(或創(chuàng)新采納者)所填滿,構(gòu)成一個(gè)復(fù)雜而多元的大模型應(yīng)用生態(tài)。
生成式AI的區(qū)域生態(tài)
產(chǎn)業(yè)不可避免地嵌入在區(qū)域中。縱觀全球,生成式AI的產(chǎn)業(yè)競(jìng)爭(zhēng)主要在中美之間開(kāi)展。對(duì)于中美AI產(chǎn)業(yè)的一般性對(duì)比分析不是本文的重點(diǎn)。本文主要關(guān)注的是兩國(guó)區(qū)域條件的差異如何影響技術(shù)生態(tài)、應(yīng)用生態(tài)以及兩者之間的良性反饋。
靜態(tài)對(duì)比,中美兩國(guó)在技術(shù)生態(tài)方面的差距并不致命。誠(chéng)然,美國(guó)在聚集、培養(yǎng)生成式AI技術(shù)人才方面具有顯著優(yōu)勢(shì)。并且,GPU出口管制在很大程度上也增加了中國(guó)企業(yè)的成本,但同時(shí)要看到我國(guó)有三個(gè)方面的有利因素。第一,得益于開(kāi)源運(yùn)動(dòng)的知識(shí)溢出效應(yīng),中美技術(shù)差距并沒(méi)有大到足以阻礙中國(guó)的產(chǎn)業(yè)進(jìn)步;第二,中國(guó)企業(yè)對(duì)開(kāi)源的貢獻(xiàn)也日益顯著,中國(guó)也吸引了一些頂級(jí)科學(xué)家回國(guó)創(chuàng)業(yè);第三,盲目的科技軍備競(jìng)賽并不可取,大模型產(chǎn)業(yè)競(jìng)爭(zhēng)的焦點(diǎn)已轉(zhuǎn)向工程化和商業(yè)化。
令人擔(dān)憂的反倒是中美應(yīng)用生態(tài)的差距。高科技產(chǎn)業(yè)的發(fā)展,短期內(nèi)可以靠資本維系,長(zhǎng)期則需要靠市場(chǎng)來(lái)支付發(fā)展所需的成本,包括消費(fèi)者側(cè)和企業(yè)側(cè)的支付。然而,中國(guó)消費(fèi)者的付費(fèi)能力遠(yuǎn)不如美國(guó)消費(fèi)者。中國(guó)移動(dòng)通信用戶的月均支出約為50元,美國(guó)約為50美元,但中國(guó)企業(yè)購(gòu)買(mǎi)GPU的成本要高于美國(guó)企業(yè)。在2B市場(chǎng),先不論支付能力,中國(guó)企業(yè)數(shù)字化水平低首先就是一個(gè)大問(wèn)題,尤其體現(xiàn)在SaaS(軟件即服務(wù))的低滲透率上。大模型應(yīng)用更容易部署到SaaS化程度較高的企業(yè),因其底層數(shù)據(jù)治理較規(guī)范,流程標(biāo)準(zhǔn)化程度較高。SaaS化程度不高的企業(yè)需花費(fèi)大量時(shí)間、精力和資源去做前期準(zhǔn)備,這會(huì)導(dǎo)致大部分企業(yè)淺嘗輒止或望而卻步。
值得強(qiáng)調(diào)的是,中國(guó)在移動(dòng)互聯(lián)網(wǎng)時(shí)代的“場(chǎng)景優(yōu)勢(shì)”在生成式AI產(chǎn)業(yè)是不成立的。場(chǎng)景優(yōu)勢(shì)建立在迭代之上,而迭代的前提是發(fā)展用戶。縱觀所有國(guó)內(nèi)大模型企業(yè),沒(méi)有一家像推廣移動(dòng)互聯(lián)網(wǎng)應(yīng)用程序那樣去不遺余力發(fā)展用戶。關(guān)鍵原因在于,移動(dòng)互聯(lián)網(wǎng)應(yīng)用程序服務(wù)一個(gè)新用戶的邊際成本幾乎為零,而大模型應(yīng)用發(fā)展一個(gè)用戶的邊際成本恒不為零。在商業(yè)模式清晰之前,地主家也沒(méi)余糧這么燒。
如果說(shuō)中國(guó)移動(dòng)互聯(lián)網(wǎng)的成功經(jīng)驗(yàn)之一在于前端場(chǎng)景優(yōu)勢(shì)與后端技術(shù)進(jìn)步的正反饋,筆者擔(dān)心中國(guó)生成式AI產(chǎn)業(yè)正在經(jīng)歷一個(gè)截然相反的過(guò)程。從這個(gè)動(dòng)態(tài)視角再去看待中美之間技術(shù)生態(tài)的差距,恐怕會(huì)得到與靜態(tài)對(duì)比不同的結(jié)論。
幾點(diǎn)思考與建議
據(jù)說(shuō),人們?nèi)菀赘吖酪患碌亩唐谟绊懙凸榔溟L(zhǎng)期潛力。關(guān)于生成式AI產(chǎn)業(yè),本文的觀點(diǎn)恰好相反:筆者長(zhǎng)期看好其作為智能基礎(chǔ)設(shè)施的前途,但短期內(nèi)對(duì)其結(jié)構(gòu)性障礙持悲觀態(tài)度。前文沒(méi)有論述中美生成式AI產(chǎn)業(yè)發(fā)展面臨的共性挑戰(zhàn),而是聚焦中國(guó)相對(duì)于美國(guó)的比較劣勢(shì)。那么,中國(guó)有沒(méi)有比較優(yōu)勢(shì)呢?筆者相信,發(fā)揮以下三方面的比較優(yōu)勢(shì)或有助于彌補(bǔ)劣勢(shì):移動(dòng)互聯(lián)網(wǎng)生態(tài)、產(chǎn)業(yè)協(xié)同治理和商業(yè)模式創(chuàng)新。
一是打通移動(dòng)互聯(lián)網(wǎng)生態(tài)與生成式AI產(chǎn)業(yè)生態(tài)。我國(guó)移動(dòng)互聯(lián)網(wǎng)產(chǎn)業(yè)在網(wǎng)絡(luò)、終端與應(yīng)用環(huán)節(jié)具備端到端的競(jìng)爭(zhēng)優(yōu)勢(shì),有望加持孱弱的2C生成式AI應(yīng)用生態(tài)。比如,微信生態(tài)如何引入生成式AI、國(guó)產(chǎn)手機(jī)操作系統(tǒng)如何與生成式AI融合、云網(wǎng)一體如何助力AI算力網(wǎng)絡(luò)效率提升等議題都應(yīng)沿著如何利用業(yè)已建立的比較優(yōu)勢(shì)去哺育生成式AI產(chǎn)業(yè)的思路去思考。
二是推動(dòng)智能產(chǎn)業(yè)群協(xié)同發(fā)展。智能基礎(chǔ)設(shè)施的建設(shè)需要整合算法、算力和數(shù)據(jù)等要素,是數(shù)字基礎(chǔ)設(shè)施和數(shù)字資源體系的有機(jī)融合和升級(jí)。支持?jǐn)?shù)字基礎(chǔ)設(shè)施運(yùn)營(yíng)企業(yè)向智能基礎(chǔ)設(shè)施運(yùn)營(yíng)企業(yè)升級(jí),實(shí)施算力、數(shù)據(jù)、算法的一體化運(yùn)營(yíng)。在需求側(cè),通過(guò)降低各行業(yè)使用生成式AI的成本,拉動(dòng)應(yīng)用、工程、運(yùn)營(yíng)等配套服務(wù)的發(fā)展。
三是堅(jiān)定鼓勵(lì)商業(yè)模式創(chuàng)新。生成式AI產(chǎn)業(yè)面臨的問(wèn)題歸根到底是價(jià)值創(chuàng)造和價(jià)值分配的問(wèn)題,即商業(yè)模式。無(wú)論是打通移動(dòng)互聯(lián)網(wǎng)生態(tài)還是推動(dòng)產(chǎn)業(yè)協(xié)同發(fā)展,都旨在為生成式AI生態(tài)的發(fā)展創(chuàng)造一個(gè)更廣闊的環(huán)境和更堅(jiān)實(shí)的基礎(chǔ)。這些比較優(yōu)勢(shì)能否有效轉(zhuǎn)化并彌補(bǔ)上述比較劣勢(shì),商業(yè)模式起決定性作用。